

Understanding Distributive Property
$3 \times(5+4)$
Step 1: First, read it like this.... "There are 3 groups of $5+4$."
Step 2: Think... What does $5+4$ look like?

Step 3: Create 3 groups of $5+4$

Step 4: What is the area of the first array? What is the area of the second array? Add them together for your answer.

$$
(3 \times 5)=15 \quad(3 \times 4)=12 \quad \text { so } \ldots 15+12=27
$$

Understanding Distributive Property

How can you solve for area by breaking apart ah array into two smaller arrays?

Look... the array is divided into two arrays.

Step 1: Write a multiplication problem for each new array.

Step 2: Add the products of the two arrays to get the total area.

$7+7+7=21$
So, $3 \times 7=21$ sq units

$6+6+6+6+6=30$
So, $5 \times 6=24$ sq units
$3+3+3+3+3=15$
So, $5 \times 3=15$ sq units

0

Find the area of each shape. by writing a multiplication problem for each.

Find the area of each shape Check your answer by coloring in ohe of the rocks below.

Area $=$ \qquad
7f \dagger

Area = \qquad

Area = \qquad

Find the area of each shape
Check your answer by coloring
in ohe of the rocks below.

Area $=28$ sq feet
Area $=36$ sq feet

$$
\text { Area }=14 \text { sq feet }
$$

$$
\text { Area }=33 \text { sq feet }
$$

$$
\text { Area }=12 \text { sq feet }
$$

Find the area of each shape. Check your answer by coloring in ohe of the rocks below.

Area = \qquad
6 ft

Area $=$

Area $=$ \qquad

Area =
\qquad 4 ft

$5 \mathrm{f} \dagger$
4 ft

$$
\text { Area }=
$$

\qquad

27
square
feet
Find the area of each shape. Check your answer by coloring in ohe of the rocks below.
4 ft

$$
\text { Area }=36 \text { sq feet }
$$

Before ___ $x{ }_{C}=$

Add their areas \qquad $+$ \qquad $=$ What factor was broken apart? \qquad

Before \qquad x \qquad $=$

After \qquad x ___) + \qquad X ___)

Add their areas \qquad $+$ \qquad What factor was broken apart?

Befors ___ $x_{2}=$ \qquad
After \qquad X___) + \qquad X ___) Add their areas \qquad $+$ \qquad $=$ \qquad What factor was broken apart? \qquad What factor was broken apart?
\qquad
 A

Before \qquad x \qquad $=$ After (___ X__) + (__ X__) Add their areas \qquad $+$ \qquad $=$ \qquad What factor was broken apart? \qquad
\qquad

ןеәу т 8и!

Before $4 \times 5=20$
After $(4 \times 2)+(4 \times 3)$
Add their areas: $8+12=20$
What factor was broken apart? 5

Before $6 \times 4=24$
After $(6 \times 2)+(6 \times 2)$
Add their areas: $12+12=24$ What factor was broken apart? 4

Before $5 \times 6=30$
After $(5 \times 4)+(5 \times 2)$
Add their areas: $20+10=30$
What factor was broken apart? 6

Before $4 \times 6=24$ After $(4 \times 3)+(4 \times 3)$ Add their areas: $12+12=24$ What factor was broken apart? 6

Before $3 \times 7=21$
After $(3 \times 3)+(3 \times 4)$
Add their areas: $9+12=21$
What factor was broken apart? 7

ןеәу ャ 8и!!чэәә」

Figure C

Figure B

Figure E

Figure D

Area \& Distributive
 $-O_{0}$

 Property

Solve for area. using the distributive property.

(__ x \qquad __) + (x ___) Area =
Area = \qquad

Area = \qquad Area =

© Teaching 4 Real

Area \& Distributive

 Property

Solve for area. using the distributive property.

$$
\square=1 \text { square unit }
$$

1. How much larger are the areas of figure $A \leqslant B$ than $C\{D$?
2. Write two multiplication equations that could solve the area of figure D.
\qquad
3. Write two multiplication equations that could solve the area of figure E.
4. If figure F 's area increased by two more rows, what would the area be?
\qquad
5. Which figure could be solved with the equation $(3 \times 5)+(3 \times 4)$?

How can you solve for the area of figure C with both multiplication and repeated addition? Explain.

$$
\square=1 \text { square unit }
$$

1. How much larger are the areas of figure $A\{B$ than $C\{D$?

$$
14 \text { square units }
$$

2. Write two multiplication equations that could solve the area of figure D.
Answers may vary.

$$
\text { Ex) }(4 \times 2) \xi(4 \times 2)
$$

3. Write two multiplication equations that could solve the area of figure E
Answers may vary.

$$
(3 \times 3) \xi(3 \times 6)
$$

4. If figure F 's area increased by two more rows, what would the area be?

27 square units
5. Which figure could be solved with the equation $(3 \times 5)+(3 \times 4)$?
Figure E

How can you solve for the area of figure $\overline{\mathbb{D}}$ C with both multiplication and repeated addition? Explain.

You can count the number of rows and columns and multiply like $4 \times 3=12$. There are 4 rows of

3 units each so you can add
$3+3+3+3=12$ square units.

\qquad
2. What is the total area of figure C; G ? \qquad
3. How much larger is figure F than figure D ? \qquad
4. Which two figures have the same area but different perimeters?

5. Which figure could be solved with the equation $(2 \times 7)+(2 \times 2)$?
6. Name two equations that could help you solve the area of figure G.
Could figure A be solved with this equation? $(3 \times 4)-3$? Yes or No? Explain

1. What is the area of figure C ?
\qquad
2. What is the total area of figure G \{ D? \qquad
3. How much larger is the area of figure B than figure F ? \qquad
4. Which two figures have the same area but different perimeters?
\qquad
5. Which figure could be solved with the equation $(3 \times 2)+(5 \times 2)+2=$?
6. Name 2 equations that could help you solve the area of figure B.
Could figure E be solved with this equation? 3×4 Yes on No? Explain

7. What is the area of figure C ? 14 square units
8. What is the total area of figure G \} D? 32 square units
9. How much larger is the are of figure B than figure F ? 7 square units
10. Which two figures have the same area but different perimeters?
Figures C \{ D
11. Which figure could be solved with the equation $(3 \times 2)+(5 \times 2)+2=$? Figure G
12. Name 2 equations that could help you solve the area of figure B Possibility is $(2 \times 4) \xi(3 \times 3)$ Answers will vary

Ho

Could figure E be solved with ONLY this equation? 3×4 Yes or No? Explain. No, because 3×4 assumes that all of the unit squares are being used. However 2 units squares are not used.

What is the area

 of the rectangle? $=1$ square unit

What is the area of the pectangle?
J
What is the area of the shaded space?

©Teaching 4 Real

U

What is the area of the rectangle?

V
What is the area of the rectangle?

\square $=1$ square unit

8 in

What is the area of the rectangle?

area Scoot Recording Sheet

card	cos	
-	。	
-	n	∞
-	'	
d	1	and
-		\square

area Scoot Recording Sheet

Card

